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1 Introduction

The release of the multiplayer game Super Mario Kart in 1992 revolutionized the genre of racing games. Since
inception, the Mario Kart series has sold over 188.92 million copies with a worldwide player base spanning
across Asia, Europe, America and other regions. This paper focuses primarily on the algorithms used in
Mario Kart Wii (2008), which sold more than 37 million copies and remains one of the most commercially
successful Wii games, second to Wii Sports [8, 3]. In Mario Kart Wii, players compete against up to twelve
players, which can include both humans and AI controlled racers (CPUs) in themed courses ranging in
difficulty with the goal of finishing in first place. Unlike conventional racing games, which reward consistent
driving performance, the Mario Kart series differentiates itself with its utilization of several algorithmic
balancing methods to ensure no race is truly ever over until everyone crosses the finish line, so both experts
and novices can play together and have fun.

At key points during each race, players can drive through glowing item boxes that assign players a power
up. These items range in utility where items like a Banana or a Blooper offer minimal advantage, and ’S-tier’
items like a Bullet Bill or a Star can boost a poorly performing player to first place. There is online discourse
about the exact ranking of the items; however, there are generally items that are irrefutably more powerful
than others.

Figure 1: Unofficial Mario Kart Wii item tier list created by a Reddit user. Taken from a popular Reddit
post with 224 upvotes [5].

The current literature suggests that the likelihood of receiving certain items is based on a position-
dependent weighted discrete probability distribution[9]. This implies that players who are worse off will be
rewarded with better items to keep them in the race. This system, known as item probability scaling, is one of
the several techniques Nintendo uses to maintain competitiveness between the players. In addition to the item
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distribution algorithm, Mario Kart Wii employs adaptive behavior in CPUs that become more aggressive
when trailing or seem to slow down when they have too much of a lead. Earlier games in the series like
Mario Kart 64 (1996), have obvious, scripted rubber banding AI where rival CPUs are hardcoded to remain
unnaturally near other players. Rubber banding brings players stretched across various distances closer by
snapping them together using a variety of algorithms. This means that CPU racers can unrealistically speed
up to players that had a large lead even if it should be impossible. These mechanics all fall under the broader
concept of Dynamic Difficulty Adjustment (DDA), a philosophy that alters the game difficulty based on the
player’s performance in real time. Though more recent titles in the series like Mario Kart Wii rely less on
scripted CPU rubber banding, item distribution algorithms are still heavily employed.

These systems raise the question of algorithmic fairness. In particular, whether Mario Kart’s DDA
technique is algorithmically fair, or if it disadvantages individual high performing players in the interest
of group fun. While DDA aims to keep the game fun for everyone, it penalizes skill to make the game
casual friendly. This paper investigates the balancing systems used in Mario Kart Wii from an algorithmic
perspective looking at the tension between individual skill and group enjoyment, and further explores the
implications of fairness in algorithmic design.

2 System Description

Due to the proprietary nature of Nintendo’s game design, the exact implementation details of the DDA
technique used in Mario Kart Wii remain undisclosed. However, based on observed game play and design
conventions seen across the racing game genre, the consensus is that Mario Kart Wii employs a combination
of two well known player balancing techniques: item based probabilistic balancing and rubber banding.
These techniques are designed to reduce player performance disparities by adjusting in-game variables such
as item boxes or game physics based on the position of the player in a race, thereby introducing a dynamic
element of fun and unpredictability.

Item based probabilistic balancing manipulates the distribution of item boxes. Specifically, players in
lower positions are more likely to receive more advantageous items such as Bullet Bills, whereas players
in higher positions are more likely to receive less advantageous items such as a Banana. In this problem,
we assume the item probability algorithm uses the following inputs: player position, lap number, historical
performance, and items. The current player position represented by pi is a number from 1 through 12 (the
amount of players allowed in each race). The lap number is li, and the set I is the set of available items
Mushroom, Triple Mushroom, Golden Mushroom, Mega Mushroom, Green Shell, Triple Green Shells, Red
Shell, Triple Red Shells, Spiny Shell, Banana, Triple Bananas, Bob-omb, Fake Item Box, Bullet Bill, Star,
Blooper, POW Block, Thunder Cloud, Lightning. The output is a weighted probability distribution over
the items where more powerful items have higher weights when pi is higher. Let Wi = w1, w2, . . . ., be the
weights of each item based on the position.
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Figure 2: Item probability distribution for local VS races in Mario Kart Wii. Reproduced from Super Mario
Wiki [7].

However, rubber banding alters game physics or CPU behavior to narrow down gaps between players.
That is, CPUs may speed up unnaturally. It is assumed that the CPU rubber banding adjustment algorithm
uses a position gap δ p between the CPU and the leading player, and the current speed of the CPU si. The
output would be the adjusted speed s′i of the CPU where s′i > si if trailing and the opposite if leading. We
also discuss an alternative solution to unfair player match ups in Section 3.3.

3 Alternative Algorithms

3.1 Player Independent Item Distribution

Though there are more subtle CPU rubber banding algorithms used in Mario Kart Wii than in Mario
Kart 64, position dependent item distribution probabilities give lower ranked players advantages that can
drastically skew results. This solution proposes a position independent weighted distribution where all
players receive items based on the same fixed probability distribution. In other words, more powerful items
will be more rare, but the rarity is agnostic of the position of the player in the race. This algorithm’s focus
is to reward individual players and de-penalize higher skilled players. As stated in the problem statement,
I = i1, i2. . . ik is the set of all possible items in the item boxes. Instead of using a set, because the probabilities
of getting a certain item are fixed, a dictionary can be used. For all players the item received is drawn from
D = i1 : w1, i2 : w2. . . ik : wk, the dictionary containing the items and their corresponding probabilities of
appearing in the item box. The actual fixed probabilities should be chosen such that powerful items are
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more rare. Here the item rarity is global and position independent.
A simple implementation of the algorithm in the game could be a quick three second weighted roulette

wheel that pops up on the side, where less powerful items would take up a higher fraction of the wheel
corresponding to their higher probability of being chosen, and the wheel would be the same for all players
regardless of their position. After the player drives through the item box, assuming the cumulative distri-
bution is already precomputed, generating a random number takes constant time O(1). Given that the for
loop goes through at most m items in the list, the worst case running time is O(m). However, since m is a
relatively insignificant constant number (m < 19), it is will be O(1) in practice because as the game grows
larger this number remains constant.

Algorithm 1: Fixed Item Distribution Algorithm

Input: Item probability dictionary D = {i1 : w1, i2 : w2, . . . , ik : wk}
Output: An item randomly drawn based on the fixed distribution

1 random num ← random number between 0 and 1
2 cumulative ← 0
3 foreach (item, weight) in D do
4 cumulative ← cumulative + weight
5 if random num ≤ cumulative then
6 return item
7 end

8 end

Though this algorithm intends to reward individual skill, it may inadvertently reduce it by limiting
opportunities for comebacks, decreasing competitiveness. Additionally, because the weights are fixed, this
can make catching up to those in the lead impossible if they happen to get a ’S-tier’ item in the last lap, for
example.

3.2 Circuit Adaptive Track

While a global item distribution aims to prioritize individual fairness, a circuit adaptive track emphasizes
group fairness, acting as a possibly more equitable alternative technique to rubber banding. Instead of getting
a boost from a Bullet Bill from 12th to 2nd place, a player in last place might receive an adapted version
of the track to race on in real time, in order to catch up with players who are ahead. The paper Circuit-
adaptive challenge balancing in racing games by Rietveld et al., provides an algorithm for this approach [1].
The track is sectioned up into several parts, with each part having different versions. Harder versions will
have narrower roads and sharper turns, while easier versions will have both wider roads and turns.
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Algorithm 2: Circuit-adaptive rubber banding

1 while race-not-finished do
2 for all-players do
3 if player-completes-circuit-segment and next-circuit-segment-unoccupied then
4 if gap-size-within-designer-specified-tolerance then
5 c← SVMClassifier(gameplay-observations)

6 switch c do
7 case too-easy do
8 inject-hard-circuit-segment
9 end

10 case just-right do
11 inject-circuit-segment-with-same-challenge-level-as-current
12 end
13 case too-hard do
14 inject-easy-circuit-segment
15 end

16 end

17 end
18 else
19 if player-is-too-far-behind then
20 inject-easy-circuit-segment
21 end
22 else
23 inject-hard-circuit-segment
24 end

25 end

26 end

27 end

28 end

Adapted directly from Rietveld et al. (2014) [1].

The general outline for this algorithm detailed in the paper by Rietveld et al. is a while loop that continues
until the race is completed. Within this while loop the algorithm will iteratively check each player’s rank
within the race and adjust the circuit accordingly. The algorithm will not change the difficulty of a segment
if there is a player currently on that segment. The way Rietveld et al. suggests checking and adapting the
circuit is using a designer specified tolerance level of how far behind a player is from the one in front of
them and a switch case to determine which difficulty to change the circuit to. The switch case allows for
more specific instances and other gameplay data to be considered, but the authors also include the option
to simply rubber band in the binary sense of if someone “is too far behind” or not.

This algorithm uses rubber banding and applies it to help players who are behind, catch up by giving
them an easier. Simultaneously the algorithm slows down players in higher ranks by giving them more
challenging paths. This achieves the goal of lessening the margin between those who are ahead and far
behind, making all players more balanced.

The authors consider altering the speeds of players depending on how they are performing as traditional
rubber banding. They argue that circuit adaptive rubber banding is simply an alternative method for player
balancing. They also suggest that this method of rubber banding can coincide with traditional rubber
banding.

This algorithm depends on two variables. One variable being duration d of the race and the other being
the number of players within the race n. The while loop depends on how quickly players complete the race,
and the inner for loop depends on the number of players within the race, which is bound to twelve players.
These two loops are nested, thus the overall complexity of the algorithm is approximately O(d).
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3.3 Matching players with similar profiles/skill levels

Rather than adapting to the game as it is being played, this algorithm attempts to player balance before
the race is in progress through matching up players with similar abilities. This approach would also thus
prioritize group fairness over individual fairness through attempting to level the playing field. An algorithm
that can be used to match players is a merge sort algorithm.

In Mario Kart Wii, there are different types of tracks or race courses, to which number IDs will be
assigned. While a player profile may be more generalized, a player profile can be taken as a ranking of the
race courses in ascending order of how well a player has performed in each course. Although there might
already be players grouped together based on average times or other data points, this paper will focus on
course rankings for the purposes of this example.

Without loss of generality, compare two players A and B. Let player A’s profile ranking be the “sorted”
order of the tracks. Apply Merge and Count to player B’s profile ranking, and then sort them according to
the “sorted” order from player A. By counting the number of inversions, it will become clear how similar or
dissimilar a pair of players are. That is, with more inversions, the more dissimilar the pair of players, whereas
with less inversions, the more similar the pair of players. Again, this algorithm is relatively intuitive. The
goal is to match players with similar players so that there is an even matching of skill level. When players
have similar abilities, there will be more balance within the game, allowing more competitiveness.

In a paper by Cechanowicz et al., they suggest using several different balancing methods to increase overall
group enjoyment. Furthermore, they show that using multiple player balancing techniques, in fact, leads to
more effective player balancing and is less noticeable to players [2]. Thus, this approach in conjunction with
other approaches, an create a more well rounded player balance within the game. Additionally, because this
method would be used before the game is played, it can be effectively used in addition to the techniques
that would occur during game play.

This algorithm will run in O(nlogn) when comparing two players. n in this scenario refers to the number
of tracks, which is a constant number. Thus, the actual complexity of this algorithm is constant time.
However, the real-time complexity extends beyond the scope of the comparing algorithm. It is particularly
significant in how it is applied to a group of players. For example, if there are n players, and each player is
compared with every other player, the time complexity will approximately be O(n2).

4 Fairness Analysis

The tension of fairness that Mario Kart Wii ’s design highlights is mainly that of individual fairness and
group fairness. As simply put by Friedler et. al, individual fairness aims to treat individuals who share
similar features in the same way [4]. Thus, in the context of game play, the standard approach of individual
fairness holds that outcomes such as overall victory or item distribution should reflect a player’s in-game skill
and performance: a player who executes better racing lines and smarter strategies should be rewarded with
a higher likelihood of winning, whereas a player who does not should lose. In contrast, group fairness takes
the approach of non-discrimination, where systems are adjusted to people’s backgrounds. Mario Kart Wii,
in particular, implements this through DDA mechanisms like item-based probabilistic balancing and rubber
banding. As previously mentioned, these techniques appear to narrow the performance gap between players
by distributing more advantageous items to those in lower positions in the race and less advantageous items
to those in higher positions as well as manipulating the speed of CPUs depending on real players’ game
play. Thus, Mario Kart Wii appears to hold the group fairness idea where everyone should have an equal
opportunity to win regardless of skill level, which it achieves through maintaining competitive balance among
all players.

While the implementation of these mechanisms certainly make the game more fun and unpredictable
for its audience, they raise important questions regarding the issue of algorithmic fairness. That is, should
players be inadvertently penalized for performing well? It is also important to consider a key third component
in this discussion: perceived fairness. Even if the Mario Kart Wii system aims to balance player outcomes
objectively, it can still be perceived as unfair to the game’s players themselves. Less skilled players may
perceive this balancing as welcoming, since it helps them stand a chance against better competitors. However,
these accommodations might result reduced enjoyment or engagement for more highly skilled players, who
do not benefit from these accommodations.
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The fairness discussion also reflects larger debates surrounding algorithmic fairness. For example, Pro-
fessor Reuben Binns discusses both individual fairness and group fairness as it relates to college admissions
and financial lending. More specifically, he shows how either approach might be used to mitigate disparities
depending on how an individual’s performance is perceived. That is, whether the performance disparity
appears to be due to an individual’s effort and choice or structural disadvantage [6]. Now applying this to
the ”real world”, in the case of college admissions, affirmative action can be seen as rubber banding where
outcomes are adjusted based on ”players” who may have greater systemic barriers. Thus, like in Mario Kart
Wii, this technique aims to create a more level playing field, foster inclusivity and ensure that colleges are
accepting diverse communities. Additionally, Binns’ brings up the example of financial lending and how
women may be seen as less financially credible compared to men despite similar financial histories. The
question, then, is whether this is the result of personal circumstances or a larger disadvantage that needs
to be dynamically adjusted for. In Mario Kart Wii, if victory were to be solely based off of skill, artificial
interference in game play would be eliminated, which includes removing rubber banding. This would be
analogous to only considering personal circumstances in the case of college admissions and financial lend-
ing. In contrast, if a more holistic approach were desirable, then low-skilled players would continue to be
accommodated through Mario Kart Wii ’s current DDA mechanisms. This would be analogous to taking
into consideration larger societal marginalization of certain groups.

However, it is important to note that the question of whether or not something is definitively fair is
difficult to answer, and largely depends on the system’s goals. The goals of Mario Kart Wii, for example,
might simply be to be fun, inclusive, and enjoyable for all, which might require a different criteria of fairness
than that of other games or real life situations.

5 Conclusion

Mario Kart Wii acts as an interesting case study regarding algorithmic fairness, especially through its DDA
mechanisms such as item probability scaling and rubber banding. While designed to maximize engagement
and enjoyment amongst players, these mechanisms also bring to light important questions regarding fairness
for highly skilled players. In our paper, we have mainly focused on the tension between individual fairness,
which rewards individual skill, and group fairness, which prioritizes group inclusivity. We have also proposed
alternatives to the DDA mechanism approach to fairness present in Mario Kart Wii such as random item
distribution, circuit adapting, and skill matchmaking, which attempt to minimize disparities between high-
skilled players and low-skilled players in different ways. Importantly, we note that there is no singular
solution to fairness, and, in fact, it depends on a system’s goal and context. In the case of Mario Kart Wii,
while the mismatch between competition and enjoyment are intentional, our algorithmic analysis allows us
to better understand, and possibly improve, designs in gaming and beyond.
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